已知点和圆
:
.
(Ⅰ)过点的直线
被圆
所截得的弦长为
,求直线
的方程;
(Ⅱ)试探究是否存在这样的点:
是圆
内部的整点(平面内横、纵坐标均为整数的点称为整点),且△OEM的面积
?若存在,求出点
的坐标,若不存在,说明理由.
如图,已知四棱锥中,底面
是直角梯形,
,
,
,
,
平面
,
.
(Ⅰ)求证:平面
;
(Ⅱ)求证:平面
;
(Ⅲ)若是
的中点,求三棱锥
的体积.
光线从点射出,到
轴上的
点后,被
轴反射,这时反射光线恰好过点
,求
所在直线的方程及点
的坐标.
若非零函数对任意实数
均有
,且当
时
(1)求证:;
(2)求证:为R上的减函数;
(3)当时, 对
恒有
,求实数
的取值范围.
已知函数,且
.
(1)判断的奇偶性并说明理由;
(2)判断在区间
上的单调性,并证明你的结论;
(3)若在区间上,不等式
恒成立,试确定实数
的取值范围.