(本小题满分10分)已知箱中装有2个白球,3个黑球,每次从中任取一球(不放回),取完白球则停止取球.
(1)求取2次后仍不能停止的概率;
(2)记为停止取球后取球的次数,求
的数学期望
.
如图,直三棱柱中,
,
为
中点,
上一点,且
.
(1)当时,求证:
平面
;
(2)若直线与平面
所成的角为
,求
的值.
某学校在一次运动会上,将要进行甲、乙两名同学的乒乓球冠亚军决赛,比赛实行三局两胜制.已知每局比赛中,若甲先发球,其获胜的概率为,否则其获胜的概率为
.
(1)若在第一局比赛中采用掷硬币的方式决定谁先发球,试求甲在此局获胜的概率;
(2)若第一局由乙先发球,以后每局由负方先发球.规定胜一局记2分,负一局记0分,记为比赛结束时甲的得分,求随机变量
的分布列及数学期望
.
已知向量,函数
的最小正周期为
.
(1)求的值;
(2)设的三边
、
、
满足:
,且边
所对的角为
,若关于
的方程
有两个不同的实数解,求实数
的取值范围.
已知函数(
).
(1)当时,求函数
的单调区间;
(2)函数在定义域内是否存在零点?若存在,请指出有几个零点;若不存在,请说明理由;
(3)若对任意
恒成立,求a的取值范围.
如图,已知圆E ,点
,P是圆E上任意一点.线段PF的垂直平分线和半径PE相交于Q.
(1)求动点Q的轨迹的方程;
(2)点,
,点G是轨迹
上的一个动点,直线AG与直线
相交于点D,试判断以线段BD为直径的圆与直线GF的位置关系,并证明你的结论.