(本小题满分12分)某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:
零件的个数![]() |
![]() |
![]() |
![]() |
![]() |
加工的时间![]() |
![]() |
![]() |
![]() |
![]() |
(1)在给定的坐标系中画出表中数据的散点图;
(2)求出关于
的线性回归方程
,并在坐标系中画出回归直线;
(3)试预测加工个零件需要多少时间?
在△ABC中,角A,B,C的对边分别为a,b,c,且满足(a-c)
=c
(1)求角B的大小;
(2)若||=
,求△ABC面积的最大值.
已知数列{an}的首项a1=1,且满足.
(1)设,求证:数列{bn}是等差数列,并求数列{an}的通项公式;
(2)设cn=bn·2n,求数列{cn}的前n项和Sn.
已知函数f(x)=cosx•sin(x+)﹣
cos2x+
,x∈R.
(1)求f(x)的最小正周期;
(2)求f(x)在闭区间[﹣,
]上的最大值和最小值.
数列{an}通项公式,前n项和为Sn,则S2015=
设函数
(1)若函数在
处有极值,求函数
的最大值;
(2)是否存在实数,使得关于
的不等式
在
上恒成立?若存在,求出
的取值范围;若不存在,说明理由;
(3)证明:不等式