2015年元旦联欢晚会某师生一块做游戏,数学老师制作了六张卡片放在盒子里,卡片上分别写着六个函数:分别写着六个函数:,
.
(1)现在取两张卡片,记事件A为“所得两个函数的奇偶性相同”,求事件A的概率;
(2)从盒中不放回逐一抽取卡片,若取到一张卡片上的函数是奇函数则停止抽取,否则继续进行,记停止时抽取次数为,写出
的分布列,并求其数学期望.
已知外接圆劣弧
上的点(不与点
、
重合),延长
交
的延长线于
.
(Ⅰ)求证:;
(Ⅱ)求证:.
已知函数,
,其中
且
.
为自然对数的底数.
(Ⅰ)当时,求函数
的单调区间和极小值;
(Ⅱ)当时,若函数
存在
三个零点,且
,试证明:
;
已知椭圆:
经过点
,且焦点与双曲线
的焦点相同.
(Ⅰ)求椭圆的方程;
(Ⅱ)若过点而不过点
的动直线
交椭圆
于
两点,证明:
.
如图,为矩形,
为梯形,平面
平面
,
,
.
(Ⅰ)若为
中点,求证:
∥平面
;
(Ⅱ)求平面与
所成锐二面角的大小.
两个人在进行一项掷骰子放球游戏中,规定:若掷出1点,甲盒中放一球;
若掷出2点或3点,乙盒中放一球;若掷出4点或5点或6点,丙盒中放一球,前后共掷3次,设分别表示甲,乙,丙3个盒中的球数.
(Ⅰ)求的概率;
(Ⅱ)记,求随机变量
的概率分布列和数学期望.