(本小题满分14分)已知函数
(1)求的单调区间和极值;
(2)设,若
在
上不单调且仅在
处取得最大值,求
的取值范围;
(3)当时,探究当
时,函数
的图像与函数
图像之间的关系,并证明你的结论.
已知复数,则当m为何实数时,复数z是
(1)实数;(2)虚数;(3)纯虚数;(4)零;(5)对应的点在第三象限
如图所示,流程图给出了无穷等差整数列,
时,输出的
时,输出的
(其中d为公差)
(I)求数列的通项公式;
(II)是否存在最小的正数m,使得成立?若存在,求出m的值,若不存在,请说明理由。
已知点B(0,1),点C(0,—3),直线PB、PC都是圆的切线(P点不在y轴上).
(I)求过点P且焦点在x轴上抛物线的标准方程;
(II)过点(1,0)作直线与(I)中的抛物线相交于M、N两点,问是否存在定点R,使
为常数?若存在,求出点R的坐标与常数;若不存在,请说明理由。
已知函数
(I)若,判断函数在定义域内的单调性;
(II)若函数在内存在极值,求实数m的取值范围。
AB为圆O的直径,点E、F在圆上,AB//EF,矩形ABCD所在平面与圆O所在平面互相垂直,已知AB=2,BC=EF=1。
(I)求证:BF⊥平面DAF;
(II)求多面体ABCDFE的体积。