游客
题文

(本小题满分14分)已知函数 
(1)求的单调区间和极值;
(2)设,若上不单调且仅在处取得最大值,求的取值范围;
(3)当时,探究当时,函数的图像与函数图像之间的关系,并证明你的结论.

科目 数学   题型 解答题   难度 较难
登录免费查看答案和解析
相关试题

已知椭圆的中心在坐标原点,短轴长为4,且有一个焦点与抛物线的焦点重合.
(1)求椭圆的方程;
(2)已知过定点且斜率不为0的直线交椭圆两点,试问在轴上是否存在一个定点使得始终平分?若存在,求出点的坐标,若不存在,请说明理由.

如图,正三棱锥的所有棱长都为2,

(1)当时,求证:平面
(2)当二面角的大小为时,求实数的值.

威力实施“爱的教育”实践活动,宇华教育集团决定举行“爱在宇华”教师演讲比赛.焦作校区决定从高中部、初中部、小学部和幼教部这四个部门选出12人组成代表队代表焦作校区参赛,选手来源如下表:

部门
高中部
初中部
小学部
幼教部
人数
4
4
2
2

焦作校区选手经过出色表现获得冠军,现要从中选出两名选手代表冠军队发言.
(1)求这两名队员来自同一部门的概率;
(2)设选出的两名选手中来自高中部的人数为,求随机变量的分布列及数学期望

已知等差数列的各项互不相等,前两项的和为10,设向量,且
(1)求数列的通项公式;
(2)若的前项和为,求证:

在平面直角坐标系中,是抛物线的焦点,圆点与点,且圆心到抛物线的准线的距离为
(1)求抛物线的方程;
(2)已知抛物线上一点,过点作抛物线的两条弦,且,判断直线是否过定点?并说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号