某市四所中学报名参加某高校今年自主招生的学生人数如下表所示:
中学 |
![]() |
![]() |
![]() |
![]() |
人数 |
![]() |
![]() |
![]() |
![]() |
为了了解参加考试的学生的学习状况,该高校采用分层抽样的方法从报名参加考试的四所中学的学生当中随机抽取50名参加问卷调查.
(1)问四所中学各抽取多少名学生?
(2)从参加问卷调查的名学生中随机抽取两名学生,求这两名学生来自同一所中学的概率;
(3)在参加问卷调查的名学生中,从来自
两所中学的学生当中随机抽取两名学生,用
表示抽得
中学的学生人数,求
的分布列.
(本小题满分12分)已知数列的前
项和
.
(Ⅰ)求数列的通项公式;
(Ⅱ)若数是等比数列,公比为
且
,
,求数列
的前n项和
.
(本小题满分12分)某市统计局就某地居民的月收入调查了 10 000 人,并根据所得数据画出样本的频率分布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在[1 000,1500)).
(Ⅰ)求居民收入在[3 000,3 500)的频率;
(Ⅱ)根据频率分布直方图算出样本数据的中位数;
(Ⅲ)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这 10 000 人中按分层抽样方法抽出 100 人作进一步分析,则月收入在[2 500,3 000)的这段应抽取多少人?
【原创】(本小题满分12分)如图,在四棱锥中,底面是正方形,底面,, 点分别是
的中点,,且交于点.
(Ⅰ)求证:平面
;
(Ⅱ)求证:平面⊥平面.
(本小题满分12分)已知△ABC中的三个内角A,B,C所对的边分别为,且满足
(Ⅰ)求;
(Ⅱ)求△ABC的面积.
(本小题满分12分)已知椭圆(
)的左、右顶点分别为
,
,且
,
为椭圆上异于
,
的点,
和
的斜率之积为
.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设为椭圆中心,
,
是椭圆上异于顶点的两个动点,求
面积的最大值.