(本小题满分12分)已知函数其中
为常数,函数
和
的图象在它们与坐标轴交点的切线互相平行.
(1)求函数的单调区间;
(2)若不等式在区间
上恒成立,求实数
的取值范围.
(本小题满分12分)(Ⅰ)在已知的坐标系中作出满足约束条件:;
;
的可行性区域;
(Ⅱ)实数满足(Ⅰ)中约束条件,求目标函数
的取值范围.
(本小题满分12分)已知四棱锥的底面是边长为2的菱形,且
.
(Ⅰ)若O是AC与BD的交点,求证:平面
;
(Ⅱ)若点是
的中点,求异面直线
与
所成角的余弦值.
已知数列满足
=-1,
,数列
满足
(1)求数列的通项公式.
(2)设数列的前
项和为
,求证:当
时,
.
(3)求证:当时,
定长为3的线段两端点
分别在
轴,
轴上滑动,
在线段
上,且
(1)求点的轨迹
的方程.
(2)设过且不垂直于坐标轴的直线
交轨迹
与
两点.问:线段
上是否存在一点
,使得以
为邻边的平行四边形为菱形?作出判断并证明.
已知过点(1,1)且斜率为
(
)的直线
与
轴分别交于
两点,分别过
作直线
的垂线,垂足分别为
求四边形
的面积的最小值.