(本小题满分14分)已知函数
(1)判断的单调性;
(2)求函数的零点的个数;
(3)令,若函数
在
内有极值,求实数
的取值范围。
从某校高三上学期期末数学考试成绩中,随机抽取了名学生的成绩得到频率分布直方图如下:
(1)根据频率分布直方图,估计该校高三学生本次数学考试的平均分;
(2)若用分层抽样的方法从分数在和
的学生中共抽取
人,该
人中成绩在
的有几人?
(3)在(2)中抽取的人中,随机抽取
人,求分数在
和
各
人的概率.
在锐角中,角
所对边分别为
,已知
.
(1)求的值;
(2)若,
求
的值.
(满分12分)已知函数.
(1)当时,求函数
的单调区间;
(2)若函数在区间
上为减函数,求实数
的取值范围;
(3)当时,不等式
恒成立,求实数
的取值范围.
“蛟龙号”从海底中带回的某种生物,甲乙两个生物小组分别独立开展对该生物离开恒温箱的成活情况进行研究,每次试验一个生物,甲组能使生物成活的概率为,乙组能使生物成活的概率为
,假定试验后生物成活,则称该试验成功,如果生物不成活,则称该次试验是失败的.
(1)甲小组做了三次试验,求至少两次试验成功的概率;
(2)如果乙小组成功了4次才停止试验,求乙小组第四次成功前共有三次失败,且恰有两次连续失败的概率;
(3)若甲乙两小组各进行2次试验,设试验成功的总次数为,求
的期望.
近年空气质量逐步恶化,雾霾天气现象出现增多,大气污染危害加重.大气污染可引起心悸.呼吸困难等心肺疾病.为了解某市心肺疾病是否与性别有关,在某医院随机的对入院50人进行了问卷调查得到了如下的列联表:
患心肺疾病 |
不患心肺疾病 |
合计 |
|
男 |
5 |
||
女 |
10 |
||
合计 |
50 |
已知在全部50人中随机抽取1人,抽到患心肺疾病的人的概率为.
(1)请将上面的列联表补充完整;
(2)是否有99.5%的把握认为患心肺疾病与性别有关?说明你的理由;
(3)已知在患心肺疾病的10位女性中,有3位又患胃病.现在从患心肺疾病的10位女性中,选出3名进行其他方面的排查,记选出患胃病的女性人数为,求
的分布列,数学期望以及方差.下面的临界值表供参考:
![]() |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
![]() |
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
(参考公式,其中
)