(本小题满分14分)设函数
.
(1)若函数
在
上为减函数,求实数
的最小值;
(2)若存在
,使
成立,求正实数
的取值范围.
设二次函数
,对任意实数
,有
恒成立;数列
满足
.
(1)求函数
的解析式;
(2)试写出一个区间
,使得当
时,
且数列
是递增数列,并说明理由;
(3)已知
,是否存在非零整数
,使得对任意
,都有
恒成立,若存在,求之;若不存在,说明理由.
已知函数
(
),
(1)求函数
的最小值;
(2)已知
,命题p:关于x的不等式
对任意
恒成立;命题q:不等式
对任意
恒成立.若“p或q”为真,“p且q”为假,求实数m的取值范围.
解关于
的不等式:
为了降低能源损耗,最近某地对新建住宅的屋顶和外墙都要求建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度
(单位:cm)满足关系:
,若不建隔热层,每年能源消耗费用为8万元.设
为隔热层建造费用与20年的能源消耗费用之和.
(1)求
的值及
的表达式;
(2)隔热层修建多厚时,总费用
达到最小,并求最小值.
直线AB过圆心O,交圆O于A、B,直线AF交圆O于F
(不与B重合),直线
与圆O相切于C,交AB于E,且与AF垂直,垂足为G,连接AC.
求证:(1)
(2)
