已知椭圆的两个焦点为,离心率
.
(1)求椭圆的方程;
(2)设直线,若
与椭圆交于
两点,且
等于椭圆的短轴长,求
的值;
(3)若直线,若
与椭圆交于两个不同的点A和B,且使
,问这样的直线存在吗?若存在求
的值,若不存在说明理由。
已知抛物线的顶点在坐标原点,它的准线经过双曲线
:
的一个焦点
且垂直于
的两个焦点所在的轴,若抛物线
与双曲线
的一个交点是
.
(1)求抛物线的方程及其焦点
的坐标;
(2)求双曲线的方程及其离心率
.
设p:实数x满足,其中
,命题
实数
满足
.
(Ⅰ)若且
为真,求实数
的取值范围;
(Ⅱ)若是
的充分不必要条件,求实数
的取值范围.
已知函数,其中
,
在
及
处取得极值,其中
.
(1)求证:;
(2)求证:点的中点
在曲线
上.
已知数列中,
.
(1)求数列的通项公式
;
(2)证明:.
设抛物线的焦点为F,准线为
,过点F作一直线与抛物线交于A、B两点,再分别过点A、B作抛物线的切线,这两条切线的交点记为P.
(1)证明:直线PA与PB相互垂直,且点P在准线上;
(2)是否存在常数,使等式
恒成立?若存在,求出
的值;若不存在,说明理由.