(本小题共13分)已知椭圆的左焦点为
,过点M(-3,0)作一条斜率大于0的直线
与W交于不同的两点A、B,延长BF交W于点C.
(1)求椭圆W的离心率;
(2)求证:点A与点C关于轴对称.
已知定义在区间[-,
]上的函数y=f(x)图像关于直线x=
对称,当x≥
时,f(x)=-sinx.
(1)作出y=f(x)的图像;
(2)求y=f(x)的解析式.
已知数列{an}的前n项和为Sn,且对任意的n∈N*有an+Sn=n.
(1)设bn=an-1,求证:数列{bn}是等比数列;
(2)设c1=a1且cn=an-an-1(n≥2),求{cn}的通项公式.
已知函数f(x)=ax3-3x2+1-(a∈R且a≠0),试求函数f(x)的极大值与极小值.
设命题p:函数是R上的减函数,命题q:函数f(x)=x2-4x+3在
上的值域为[-1,3],若“p且q”为假命题,“p或q”为真命题,求
的取值范围.
选修4—5:不等式选讲
已知函数
(1)若不等式的解集为
,求实数a,m的值。
(2)当a =2时,解关于x的不等式