(本小题满分12分)有一种密码,明文是由三个字符组成,密码是由明文对应的五个数字组成,编码规则如下表:明文由表中每一排取一个字符组成,且第一排取的字符放在第一位,第二排取的字符放在第二位,第三排取的字符放在第三位,对应的密码由明文对应的数字按相同的次序排成一组
组成.
第一排 |
明文字符 |
A |
B |
C |
D |
密码字符 |
11 |
12 |
13 |
14 |
|
第二排 |
明文字符 |
E |
F |
G |
H |
密码字符 |
21 |
22 |
23 |
24 |
|
第三排 |
明文字符 |
M |
N |
P |
Q |
密码字符 |
1 |
2 |
3 |
4 |
设随机变量表示密码中所含不同数字的个数.
(Ⅰ)求;
(Ⅱ)求随机变量的分布列和它的数学期望.
(本小题满分10分)
如图,AB是⊙O的直径 ,AC是弦 ,∠BAC的平分线AD交⊙O于点D,DE⊥AC,交AC的延长线于点E.OE交AD于点F.
(1)求证:DE是⊙O的切线;
(2)若,求
的值.
(本小题满分12分)已知数列各项均不为0,其前
项和为
,且对任意
都有
(
为大于1的常数),记
.
(1) 求;
(2) 试比较与
的大小(
);
(3) 求证:
(本小题满分12分)己知、
、
是椭圆
:
(
)上的三点,其中点
的坐标为
,
过椭圆的中心,且
,
。
(Ⅰ)求椭圆的方程;
(Ⅱ)过点的直线
(斜率存在时)与椭圆
交于两点
,
,设
为椭圆
与
轴负半轴的交点,且
,求实数
的取值范围.
(本小题满分12分)已知f(x)=(x∈R)在区间[-1,1]上是增函数.
(Ⅰ)求实数a的值组成的集合A;
(Ⅱ)设关于x的方程f(x)=的两个非零实根为x1、x2.试问:是否存在实数m,使得不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范围;若不存在,请说明理由.
(本小题满分12分) 已知一个四棱锥的三视图如图所示,其中,且
,
分别为
、
、
的中点
(1)求证:PB//平面EFG
(2)求直线PA与平面EFG所成角的大小
(3)在直线CD上是否存在一点Q,使二面角的大小为
?若存在,求出CQ的长;若不存在,请说明理由。