如图,为某湖中观光岛屿,
是沿湖岸南北方向道路,
为停车场,
,某旅游团浏览完岛屿后,乘游船回停车场
,已知游船以
的速度沿方位角
的
方向行驶,.游船离开观光岛屿
分钟后,因事耽搁没有来得及登上游船的游客甲,为了及时
赶到停车地点与旅游团会合,立即决定租用小艇先到达湖岸南北大道
处,然后乘景区电动出租车到
停车场处(假设游客甲到达湖滨大道后幸运地一点未耽搁便乘上了电动出租车).游客甲乘小艇行驶的
方位角是,电动出租车的速度为
.
(Ⅰ)设,问小艇的速度为多少
时,游客甲才能与游船同时到达点
;
(Ⅱ)设小艇速度为,请你替该游客设计小艇行驶的方位角
,当角
的余弦值是多少时,游客甲能按计划以最短时间到达
.
设函数 若曲线 的斜率最小的切线与直线 平行,求:
(Ⅰ) 的值;
(Ⅱ)函数 的单调区间.
在每道单项选择题给出的4个备选答案中,只有一个是正确的.若对4道选择题中的每一道都任意选定一个答案,求这4道题中:
(Ⅰ)恰有两道题答对的概率;
(Ⅱ)至少答对一道题的概率.
设 的内角 , , 的对边分别为 , , .已知 ,求:
(Ⅰ) 的大小;
(Ⅱ) 的值.
已知函数 .
( I ) 求函数 的单调区间;
( II ) 若不等式 对任意的 都成立(其中 是自然对数的底数).求 的最大值.
若 是抛物线 上的不同两点, 弦 (不平行于 轴)的垂直平分线与 轴相交于点 , 则称弦 是点 的一条 "相关弦".已知当 时,点
存在无穷多条 "相关弦" .给定 .
(I) 证明:点 的所有"相关弦"的中点的横坐标相同;
(II) 试问:点 的"相关弦"的弦长中是否存在最大值?若存在, 求其最大值(用 表示):若不存在, 请说明理由.