(本小题满分12分)如图所示,程序框图给出了无穷正项数列{an}满足的条件,且当时,输出的
是
; 当
时,输出的
是
.
(1)试求数列{an}的通项公式;
(2)试求当k=10时,输出的T的值.(写出必要的解题步骤)
在平面直角坐标系中,已知椭圆
:
的离心率
,且椭圆C上一点
到点Q
的距离最大值为4,过点
的直线交椭圆
于点
(Ⅰ)求椭圆C的方程;
(Ⅱ)设P为椭圆上一点,且满足(O为坐标原点),当
时,求实数
的取值范围.
如图,四边形PCBM是直角梯形,∠PCB=90°,PM∥BC,PM=1,BC=2.又AC=1,∠ACB=120°,AB⊥PC,直线AM与直线PC所成的角为60°.
(1)求证:PC⊥AC;
(2)求二面角M﹣AC﹣B的余弦值;
(3)求点B到平面MAC的距离.
数列的前
项和为
,且
是
和
的等差中项,等差数列
满足
,
.
(1)求数列、
的通项公式;
(2)设,数列
的前
项和为
,证明:
.
如图所示,扇形AOB,圆心角AOB的大小等于,半径为2,在半径OA上有一动点C,过点C作平行于OB的直线交弧AB于点P.
(1)若C是半径OA的中点,求线段PC的长;
(2)设,求
面积的最大值及此时
的值.
某出版社新出版一本高考复习用书,该书的成本为5元/本,经销过程中每本书需付给代理商m元(1≤m≤3)的劳务费,经出版社研究决定,新书投放市场后定价为元/本(9≤
≤11),预计一年的销售量为
万本.
(1)求该出版社一年的利润(万元)与每本书的定价
的函数关系式;
(2)当每本书的定价为多少元时,该出版社一年的利润最大,并求出
的最大值
.