科幻小说《实验室的故事》中,有这样一个情节,科学家把一种珍奇的植物分别放在不同温度的环境中,经过一天后,测试出这种植物高度的增长情况(如下表):
温度![]() |
…… |
-4 |
-2 |
0 |
2 |
4 |
4.5 |
…… |
植物每天高度增长量![]() |
…… |
41 |
49 |
49 |
41 |
25 |
19.75 |
…… |
由这些数据,科学家推测出植物每天高度增长量是温度
的函数,且这种函数是反比例函数、一次函数和二次函数中的一种.
(1)请你选择一种适当的函数,求出它的函数关系式,并简要说明不选择另外两种函数的理由;
(2)温度为多少时,这种植物每天高度的增长量最大?
(3)如果实验室温度保持不变,在10天内要使该植物高度增长量的总和超过250mm,那么实验室的温度应该在哪个范围内选择?请直接写出结果.
如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数(m≠0)的图象相交于A、B两点.求:
(1)根据图象写出A、B两点的坐标并分别求出反比例函数和一次函数的解析式;
(2)根据图象写出:当x为何值时,一次函数值大于反比例函数值.
端午节吃粽子是中华民族的传统习俗,一超市为了吸引消费者,增加销售量,特此设计了一个游戏,其规则是:分别转动如图所示的两个可以自由转动的转盘各一次,每次指针落在每一字母区域的机会均等(若指针恰好落在分界线上则重转),当两个转盘的指针所指字母都相同时,消费者就可以获得一次八折优惠价购买粽子的机会.
(1)用树状图或列表的方法(只选其中一种)表示出游戏可能出现的所有结果;
(2)若一名消费者只能参加一次游戏,则他能获得八折优惠价购买粽子的概率是多少?
先化简,再求值:,其中a=
﹣1.
为迎接2011年高中招生考试,某中学对全校九年级学生进行了一次数学摸底考试,并随机抽取了部分学生的测试成绩作为样本进行【解析】,绘制成了如下两幅不完整的统计图,请根据图中所给信息,【答案】下列问题:
(1)请将表示成绩类别为“中”的条形统计图补充完整;
(2)在扇形统计图中,表示成绩类别为“优”的扇形所对应的圆心角是 72 度;
(3)学校九年级共有1000人参加了这次数学考试,估算该校九年级共有多少名学生的数学成绩可以达到优秀?
画△ABC,使其两边为已知线段a、b,夹角为β.(要求:用尺规作图,写出已知、求作;保留作图痕迹;不在已知的线、角上作图;不写作法).
已知:
求作: