如图有两个转盘,每个转盘都分为3个相同大小的扇形区域,分别用序号1,2,3标出.现转动两个转盘,等转盘停止转动时,指针指向每个区域的可能性相等(不计指针与两个区域交线重合的情形),将所得区域的序号相乘,比较所得积为奇数和偶数的概率的大小.有人说:因为两个转盘中奇数序号比偶数序号多,显然所得积为奇数的概率大,你同意他的说法吗?请说明理由.
如图1,点 坐标为 ,以 为边在第一象限内作等边 ,点 为 轴上一动点,且在点 右侧,连接 ,以 为边在第一象限内作等边 ,连接 交 于 .
(1)①直接回答: 与 全等吗?
②试说明:无论点 如何移动, 始终与 平行;
(2)当点 运动到使 时,如图2,经过 、 、 三点的抛物线为 .试问: 上是否存在动点 ,使 为直角三角形且 为直角边?若存在,求出点 坐标;若不存在,说明理由;
(3)在(2)的条件下,将 沿 轴翻折得 ,设 与 组成的图形为 ,函数 的图象 与 有公共点.试写出: 与 的公共点为3个时, 的取值.
探究:小明在求同一坐标轴上两点间的距离时发现,对于平面直角坐标系内任意两点 , , , ,可通过构造直角三角形利用图1得到结论: 他还利用图2证明了线段 的中点 的坐标公式: , .
(1)请你帮小明写出中点坐标公式的证明过程;
运用:(2)①已知点 , ,则线段 长度为 ;
②直接写出以点 , , , 为顶点的平行四边形顶点 的坐标: ;
拓展:(3)如图3,点 在函数 的图象 与 轴正半轴夹角的平分线上,请在 、 轴上分别找出点 、 ,使 的周长最小,简要叙述作图方法,并求出周长的最小值.
如图, 内接于 , 平分 交 于 ,过点 作 分别交 、 延长线于 、 ,连接 .
(1)求证: 是 的切线;
(2)求证: ;
(3)若 、 的长是关于 的方程 的两实根,且 ,求 的半径.
宏兴企业接到一批产品的生产任务,按要求必须在14天内完成.已知每件产品的出厂价为60元.工人甲第 天生产的产品数量为 件, 与 满足如下关系: .
(1)工人甲第几天生产的产品数量为70件?
(2)设第 天生产的产品成本为 元 件, 与 的函数图象如图.工人甲第 天创造的利润为 元,求 与 的函数关系式,并求出第几天时,利润最大,最大利润是多少?
如图,信号塔 座落在坡度 的山坡上,其正前方直立着一警示牌.当太阳光线与水平线成 角时,测得信号塔 落在斜坡上的影子 长为 米,落在警示牌上的影子 长为3米,求信号塔 的高.(结果不取近似值)