已知:如图1,图形①满足AD=AB,MD=MB,∠A=72°,∠M=144°.图形②与图形①恰好拼成一个菱形(如图2).记AB的长度为a,BM的长度为b.
(1)图形①中∠B= °,图形②中∠E= °;
(2)小明有两种纸片各若干张,其中一种纸片的形状及大小与图形①相同,这种纸片称为“风筝一号”;另一种纸片的形状及大小与图形②相同,这种纸片称为“飞镖一号”.
①小明仅用“风筝一号”纸片拼成一个边长为b的正十边形,需要这种纸片 张;
②小明若用若干张“风筝一号”纸片和“飞镖一号”纸片拼成一个“大风筝”(如图3),其中∠P=72°,∠Q=144°,且PI=PJ=a+b,IQ=JQ.请你在图3中画出拼接线并保留画图痕迹.(本题中均为无重叠、无缝隙拼接)
某年级组织学生参加夏令营活动,本次夏令营分为甲、乙、丙三组进行。
下面两幅统计图反映了学生参加夏令营的报名情况,请你根据图中的信息回答下列问题:
(1)该年级报名参加本次活动的总人数为人;
(2)该年级报名参加丙组的人数为人,并补全频数分布直方图;
(3)根据实际情况,需从甲组抽调部分同学到丙组,使丙组人数是甲组人数的3倍,应从甲抽调多少名学生到丙组?
如图,在边长为1的正方形组成的网格中建立直角坐标系,△AOB的顶点均在格点上,点O为原点,点A、B的坐标分别是A(3,2)、B(1,3)。
(1)将△AOB向下平移3个单位后得到△A1O1B1,则点B1的坐标为;
(2)将△AOB绕点O逆时针旋转90°后得到△A2OB2,请在图中作出△A2OB2,并求出这时点A2的坐标为;
(3)在(2)中的旋转过程中,点B经过的路径为弧BB2,那么弧BB2的长为。
如图,四边形ABCD是平行四边形,对角线AC、BD交于点O,过点O画直线EF分别交AD、BC于点E、F。求证:OE=OF
(1)计算:;
(2)我们已经学习了一元二次方程的四种解法:因式分解法,开平方法,配方法和公式法。请从以下一元二次方程中任选一个,并选择你认为适当的方法解这个方程。
①②
③
④
如图,抛物线与x轴的两个交点A、B,与y轴交于点C,A点坐标为(4,0),C点坐标(0,-4).
(1)求抛物线的解析式;
(2)用直尺和圆规作出△ABC的外接圆⊙M,(不写作法,保留作图痕迹),并求⊙M的圆心M的坐标;