化简:2a(a﹣)+a.
用配方法解方程:2x2+4x﹣6=0.
解一元二次方程:3x2+2x﹣5=0.
邻边不相等的平行四边形纸片,剪去一个菱形,余下一个四边形,称为第一次操作;在余下的四边形纸片中再剪去一个菱形,又余下一个四边形,称为第二次操作;……依此类推,若第n次操作余下的四边形是菱形,则称原平行四边形为n阶准菱形.如图1,平行四边形ABCD中,若AB=1,BC=2,则平行四边形ABCD为1阶准菱形.
(I)判断与推理:
(i)邻边长分别为2和3的平行四边形是_________阶准菱形;
(ii)为了剪去一个菱形,进行如下操作:如图2,把平行四边形ABCD沿BE折叠(点E在AD上),使点A落在BC边上的点F,得到四边形ABFE,请证明四边形ABFE是菱形.
(Ⅱ)操作与计算:
已知平行四边形ABCD的邻边长分别为l,a(a>1),且是3阶准菱形,请画出平行四边形ABCD及裁剪线的示意图,并在图形下方写出a的值.
在进行二次根式的化简与运算时,如遇到,
,
这样的式子,还需做进一步的化简:
=
=
.①
=
=
.②
=
=
=
.③
以上化简的步骤叫做分母有理化。还可以用以下方法化简:
=
=
=
=
.④
1.请用不同的方法化简
(1)参照③式化简=____________
(2)参照④式化简____________
2.化简:+
+
+…+
如图,平行四边形ABCD中,∠ABC=60°,点E,F分别在CD和BC的延长线上,AE∥BD,EF⊥BC,CF=。
(1)求证:四边形ABDE是平行四边形;
(2)求AB的长。