观察下表三行数的规律,回答下列问题:
|
第1列 |
第2列 |
第3列 |
第4列 |
第5列 |
第6列 |
… |
第1行 |
-2 |
4 |
-8 |
a |
-32 |
64 |
… |
第2行 |
0 |
6 |
-6 |
18 |
-30 |
66 |
… |
第3行 |
-1 |
2 |
-4 |
8 |
-16 |
b |
… |
(1) 第1行的第四个数a是 ;第3行的第六个数b是 ;
(2) 若第1行的某一列的数为c,则第2行与它同一列的数为 ;
(3) 已知第n列的三个数的和为2562,若设第1行第n列的数为x,试求x的值.
如图,若要在宽 为20米的城南大道两边安装路灯,路灯的灯臂 长2米,且与灯柱 成 角,路灯采用圆锥形灯罩,灯罩的轴线 与灯臂 垂直,当灯罩的轴线 通过公路路面的中心线时照明效果最好,此时,路灯的灯柱 高应该设计为多少米(结果保留根号)?
如图,在边长为1的正方形网格中建立平面直角坐标系,已知 三个顶点分别为 、 、 .
(1)画出 关于 轴对称的△ ;
(2)以原点 为位似中心,在 轴的上方画出△ ,使△ 与 位似,且位似比为2,并求出△ 的面积.
如右图,在 中, 、 分别是 、 延长线上的点,且 ,连接 交 、 于点 、 .求证: .
今年5月份,我市某中学开展争做“五好小公民”征文比赛活动,赛后随机抽取了部分参赛学生的成绩,按得分划分为 , , , 四个等级,并绘制了如下不完整的频数分布表和扇形统计图:
等级 |
成绩 |
频数(人数) |
|
|
4 |
|
|
|
|
|
16 |
|
|
6 |
根据以上信息,解答以下问题:
(1)表中的 ;
(2)扇形统计图中 , , 等级对应的扇形的圆心角为 度;
(3)该校准备从上述获得 等级的四名学生中选取两人做为学校“五好小公民”志愿者,已知这四人中有两名男生(用 , 表示)和两名女生(用 , 表示),请用列表或画树状图的方法求恰好选取的是 和 的概率.
如图1,抛物线 与 相交于点 、 , 与 分别交 轴于点 、 ,且 为线段 的中点.
(1)求 的值;
(2)若 ,求 的面积;
(3)抛物线 的对称轴为 ,顶点为 ,在(2)的条件下:
①点 为抛物线 对称轴 上一动点,当 的周长最小时,求点 的坐标;
②如图2,点 在抛物线 上点 与点 之间运动,四边形 的面积是否存在最大值?若存在,求出面积的最大值和点 的坐标;若不存在,请说明理由.