对于点E和四边形ABCD,给出如下定义:在四边形ABCD的边AB上任取一点E(点E不与A、B重合),分别连接ED、EC,可以把四边形ABCD分成三个三角形,如果其中有两个三角形相似,则称E为四边形ABCD边AB上的“相似点”;如果这三个三角形都相似,我们称E为四边形ABCD边AB上的“强相似点”.
如图1,在四边形ABCD中,A、B、C、D四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上, 点E是AB边上一点,∠DEC=45°,试判断点E是否是四边形ABCD边AB上的相似点,并证明你的结论正确;
(2)如图2,在矩形ABCD中,AB=8,AD=3.
①在AB边上是否存在点E,使点E为四边形ABCD边AB上的“强相似点”.若存在,有几个?试在图2中画出所有强相似点;
②在①所画图形的基础上求AE的长.
在一次汽车车展期间,某汽车经销商推出A、B、C、D四种型号的小轿车共1000辆进行展销.C型号轿车销售的成交率为50%,其它型号轿车的参展与销售情况绘制在图1和图2两幅尚不完整的统计图中.
⑴ 参加展销的D型号轿车有辆;
⑵ 请你将图2的统计图补充完整;
⑶ 从成交率看,哪一种型号的轿车销售情况最好?
两个大小不同的等腰直角三角形三角板如图①所示放置,图②是由它抽象出的几何图形,B,C,E在同一条直线上,连接DC,
(1)请找出图②中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母)。
(2)证明:DC⊥BE。
一次函数y=kx+b的图像经过点(0,-4)且与正比例函数y=k
x的图象交于点(2,-1).
(1)分别求出这两个函数的表达式;
(2)求这两个函数的图象与x轴围成的三角形的面积;
(3)直接写出不等式kx-4≥k
x的解集。
已知:如图,点B、C、E在同一条直线上,AC∥DE,AC=CE,BC=DE,求证:AB=CD。
分解因式:(1)n(m-2)-n(2-m);(2)2a
-4a
b+2ab
;