游客
题文

对于点E和四边形ABCD,给出如下定义:在四边形ABCD的边AB上任取一点E(点E不与A、B重合),分别连接ED、EC,可以把四边形ABCD分成三个三角形,如果其中有两个三角形相似,则称E为四边形ABCD边AB上的“相似点”;如果这三个三角形都相似,我们称E为四边形ABCD边AB上的“强相似点”.

如图1,在四边形ABCD中,A、B、C、D四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上, 点E是AB边上一点,∠DEC=45°,试判断点E是否是四边形ABCD边AB上的相似点,并证明你的结论正确;
(2)如图2,在矩形ABCD中,AB=8,AD=3.
①在AB边上是否存在点E,使点E为四边形ABCD边AB上的“强相似点”.若存在,有几个?试在图2中画出所有强相似点;
②在①所画图形的基础上求AE的长.

科目 数学   题型 解答题   难度 较难
知识点: 相似多边形的性质
登录免费查看答案和解析
相关试题

如图,直线y=﹣x+b交x轴于点A,交直线y=x于点B(2,m),矩形CDEF的边DC在x轴上,D在C的左侧,EF在x轴的上方,DC=2,DE=4.当点C的坐标为(﹣2,0)时,矩形CDEF开始以每秒2个单位的速度沿x轴向右运动,运动时间为t秒.

(1)求b,m的值;
(2)矩形CDEF运动t秒时,直接写出C、D两点的坐标(用含t的代数式表示);
(3)当点B在矩形CDEF的一边上时,求t的值.

某市从今年1月1日起调整居民用天燃气价格,每立方米天燃气价格上涨25%.小颖家去年12月份的燃气费是96元.今年小颖家将天燃气热水器换成了太阳能热水器,5月份的用气量比去年12月份少10m3,5月份的燃气费是90元.求该市今年居民用气的价格?

已知:P是正方形ABCD对角线BD上一点,PE⊥DC,PF⊥BC,E、F分别为垂足.
求证:AP=EF.

如图(1),在矩形ABCD中,AB=6,BC=2,点O是AB的中点,点P在AB的延长线上,且BP=3.一动点E从O点出发,以每秒1个单位长度的速度沿OA匀速运动,到达A点后,立即以原速度沿AO返回;另一动点F从P点出发,以每秒1个单位长度的速度沿射线PA匀速运动,点E、F同时出发,当两点相遇时停止运动,在点E、F的运动过程中,如图(2)以EF为边作等边△EFG,使△EFG和矩形ABCD在射线PA的同侧.设运动的时间为t秒(t>0).

(1)如图(3),当等边△EFG的边FG恰好经过点C时,求运动时间t的值;
(2)如图(4),当等边△EFG的顶点G恰好落在CD边上时,求运动时间t的值;
(3)在整个运动过程中,设等边△EFG和矩形ABCD重叠部分的面积为S,请求出S与t之间的函数关系式,并写出相应的自变量的取值范围.

如图,在⊙O中,弦AB与弦CD相交于点G,OA⊥CD于点E,过点B的直线与CD的延长线交于点F,AC∥BF.

(1)若∠FGB=∠FBG,求证:BF是⊙O的切线;
(2)若tan∠F=,CD=a,请用a表示⊙O的半径;
(3)求证:GF2-GB2=DF•GF.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号