分解因式:(1)n(m-2)-n(2-m);(2)2a
-4a
b+2ab
;
如图,在平面直角坐标系中,直线分别交
轴、
轴于
两点.点
、
,以
为一边在
轴上方作矩形
,且
.设矩形CDEF与
ABO重叠部分的面积为S.
(1)求点、
的坐标;
(2)当b值由小到大变化时,求s与b的函数关系式;
(3)若在直线上存在点
,使
等于
,请直接写出
的取值范围.
某汽车租赁公司拥有20辆汽车.据统计,当每辆车的日租金为400元时,可全部租出;当每辆车的日租金每增加50元,未租出的车将增加1辆;公司平均每日的各项
支出共4800元.设公司每日租出x辆车时,日收益为y元.(日收益=日租金收入一
平均每日各项支出)
(1)公司每日租出x辆车时,每辆车的日租金为 元(用含x的代数式表示);
(2)当每日租出多少辆时,租赁公司日收益最大?最大是多少元?
(3)当每日租出多少辆时,租赁公司的日收益不盈也不亏?
如图,在4×4的正方形方格中,△ABC的顶点都在边长为1的小正方形的顶点上.请你在图中画出一个与△ABC相似的△DEF,使得△DEF的顶点都在边长为1的小正方形的顶点上,且△ABC与△DEF的相似比为1∶2.
已知:关于x的方程 有两个不相等的实数根(其中k为实数).
(1)求k的取值范围;
(2)若k为非负整数,求此时方程的根.
如图,已知等边三角形ABC,以边BC为直径的半圆与边AB、AC分别交于点D、点E,过点E作EF⊥AB,垂足为点F.
(1)判断EF与⊙O的位置关系,并证明你的结论;
(2)过点F作FH⊥BC,垂足为点H,若等边△ABC的边长为8,求FH的长.(结果保留根号)