游客
题文

大润发超市以每件30元的价格购进一种商品,试销中发现每天的销售量(件)与每件的销售价(元)之间满足一次函数.
(1)写出超市每天的销售利润(元)与每件的销售价x(元)之间的函数关系式;
(2)如果超市每天想要获得销售利润420元,则每件商品的销售价应定为多少元?
(3)如果超市要想获得最大利润,每件商品的销售价定为多少元最合适?最大销售利润为多少元?

科目 数学   题型 解答题   难度 中等
知识点: 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

校园手机”现象越来越受到社会的关注,小记者刘凯随机调查了某校若干学生和家长对中学生带手机现象的看法,制作了如下的统计图:
求这次调查的总人数,并补全图13-1
求图13-2中表示家长“赞成”的圆心角的度数;
针对随机调查的情况,刘凯决定从初三一班表示赞成的4位家长中随机选择2位进行深入调查,其中包含小亮和小丁的家长,请你利用树状图或列表的方法,求出小亮和小丁的家长被同时选中的概率.

如图12所示的8×8网格中,每个小正方形边长均为1,以这些小正方形的顶点为顶点的三角形称为格点三角形
在图12中以线段AB为一边,点P为顶点且面积为6的格点三角形共有个;

请你选择(1)中的一个点P为位似中心,在图12中画出格点△A′B′P,使
△ABP与△A′B′P的位似比为2:1
求tan∠PB′A′的值.

计算:

如图,在直角坐标系中,梯形ABCD的底边AB在x轴上,底边CD的端点D在y轴上.直线CB的表达式为,点A、D的坐标分别为(-4,0),(0,4). 动点P从A点出发,在AB边上匀速运动. 动点Q从点B出发,在折线BCD上匀速运动,速度均为每秒1个单位长度. 当其中一个动点到达终点时,另一动点也停止运动. 设点P运动t(秒)时,△OPQ的面积为S(不能构成△OPQ的动点除外).

求出点C的坐标
求S随t变化的函数关系式;
当t为何值时,S有最大值?并求出这个最大值

有两张完全重合的矩形纸片,小亮将其中一张绕点A顺时针旋转90°后得到矩形AMEF(如图1),连结BD、MF,此时他测得BD=8cm,∠ADB=30°.

在图1中,请你判断直线FM和BD是否垂直?并证明你的结论;
小红同学用剪刀将△BCD与△MEF剪去,与小亮同学继续探究.他们将△ABD绕点A顺时针旋转得△AB1D1,AD1交FM于点K(如图2),设旋转角为β(0°<β<90°),当△AFK为等腰三角形时,请直接写出旋转角β的度数;

若将△AFM沿AB方向平移得到△A2F2M2(如图3),F2M2与AD交于点P,A2M2与BD交于点N,当NP∥AB时,求平移的距离是多少.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号