(本小题满分14分)如图,在三棱锥中,
,点
是线段
的中点,平面
平面
.
(1)在线段上是否存在点
, 使得
平面
? 若存在, 指出点
的位置, 并加以证明;若不存在, 请说明理由;
(2)求证:.
设实数
, 设函数
的最大值为
。
(1)设,求
的取值范围,并把
表示为
的函数
;
(2)求
(本题满分13分)
如图,点A、B分别是椭圆长轴的左、右端点,点F是椭圆的右焦点.点P在椭圆上,且位于x轴的上方,PA⊥PF.
(1)求点P的坐标;
(2)设M椭圆长轴AB上的一点,M到直线AP的距离等于,求椭圆上的点到点M的距离d的最小值
已知数列
中,
,
.且
k为等比数列。
(Ⅰ) 求实数及数列
、
的通项公式;
(Ⅱ) 若为
的前
项和,求
已知函数,
,和直线
:
.
又.
(1)求的值;
(2)是否存在的值,使直线
既是曲线
的切线,又是
的切线;如果存在,求出k的值;如果不存在,说明理由.
(3)如果对于所有的
,都有
成立,求k的取值范围.
已知椭圆:
的离心率为
,过坐标原点
且斜率为
的直线
与
相交于
、
,
.
⑴求、
的值;
⑵若动圆与椭圆
和直线
都没有公共点,试求
的取值范围.