游客
题文

(本小题满分12分)如图,在四棱锥中,平面,四边形,点中点.

求证:平面平面
求点到平面的距离.

科目 数学   题型 解答题   难度 中等
知识点: 空间向量的应用
登录免费查看答案和解析
相关试题

(本小题满分10分)选修4-1:几何证明选讲.
如图,在中,的角平分线,的外接圆交于点

(Ⅰ)求证:
(Ⅱ)当时,求的长.

(本小题满分12分)已知函数f(x)=alnxax3(a∈R)。
(Ⅰ)求f(x)的单调区间
(Ⅱ)设a=-1,求证:当x∈(1,+∞)时,f(x)+2>0
(Ⅲ)求证:··……<(n∈N+且n≥2)

(本小题满分12分)设,分别是椭圆的左右焦点,M是C上一点且与x轴垂直,直线与C的另一个交点为N.
(Ⅰ)若直线MN的斜率为,求C的离心率;
(Ⅱ)若直线MN在y轴上的截距为2,且,求a,b.

(本小题满分12分)如图,在四棱锥P—ABCD中,底面ABCD为菱形且∠DAB=60°,O为AD中点.

(Ⅰ)若PA=PD,求证:平面POB⊥平面PAD;
(Ⅱ)若平面PAD⊥平面ABCD,且PA=PD=AD=2,试问在线段PC上是否存在点M,使二面角M—BO—C的大小为60°,如存在,求的值,如不存在,说明理由.

(本小题满分12分)为了解今年某校高三毕业班准备报考飞行员学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1:2:3,其中第2小组的频数为12.

(Ⅰ)求该校报考飞行员的总人数;
(Ⅱ)以这所学校的样本数据来估计全省的总体数据,若从全省报考飞行员的同学中(人数很多)任选三人,设X表示体重超过60公斤的学生人数,求X的分布列和数学期望.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号