游客
题文

如图,在平面直角坐标系中,矩形OCDE的三个顶点分别是C(3,0),D(3,4),E(0,4).点A在DE上,以A为顶点的抛物线过点C,且对称轴交z轴于点B.连接EC,AC.点P,Q为动点,设运动时间为t秒.

(1)填空:点A坐标为    ,抛物线的解析式为    
(2)在图1中,若点P在线段OC上从点O向点C以1个单位/秒的速度运动,同时,点Q在线段CE上从点C向E以2个单位/秒的速度运动,当一个点到达终点时,另一个点随之停止运动.连接PQ,是否存在实数t,使得PQ所在的直线经过点D,若存在,求出t的值;若不存在,请说明理由;
(3)在图2中,若点P在对称轴上从点A开始向点B以1个单位/秒的速度运动,过点P做PF⊥AB,交AC于点F,过点F作FG⊥AD于点G,交抛物线于点Q,连接AQ,CQ.当t为何值时,△ACQ的面积最大?最大值是多少?

科目 数学   题型 解答题   难度 较难
知识点: 圆内接四边形的性质 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

解方程组:

家惠商场服装部为促进营销、吸引顾客,决定试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%.试销过程中发现,销售量(件)与销售单价(元)之间存在如图所示的一次函数关系.

关于的函数关系式(不必写出x的取值范围);
求试销期间该服装部销售该品牌服装获得利润W(元)与销售单价x(元)的函数关系式;销售单价定为多少元时,服装部可获得最大利润,最大利润是多少元?
如果在试销期间该服装部想要获得500元的利润,那么销售单价应定为多少元?
若在试销期间该服装部获得利润不低于500元,试确定销售单价的范围.

如图,抛物线y=ax2+bx+c经过原点O,与x轴交于另一点N,直线y=kx+4与两坐标轴分别交于A、D两点,与抛物线交于点B(1,m)、C(2,2).

求直线与抛物线的解析式.
若抛物线在x轴上方的部分有一动点P(x,y),设∠PON=,求当△PON的面积最大时tan的值.
若动点P保持(2)中的运动线路,问是否存在点P,使得△POA的面积等于△PON的面积的?若存在,请求出点P的坐标;若不存在,请说明理由

在图①至图③中,△ABC为直角三角形,且∠ABC=90º,∠A=30º,点P在AC上,∠MPN=90º.

当点P为线段AC的中点,点M、N分别在线段AB、BC上,且PM⊥AB,
PN⊥BC(如图①)时,则PN和PM的数量关系是:PN=________PM;
当点P为线段AC的中点,点M、N分别在线段AB、BC上(如图②)时,求的值
当PC=PA,点M、N分别在线段AB、BC上(如图③)时,求的值;

如图①,梯形ABCD中,DC∥AB,DE⊥AB于点E.
阅读理解:
在图①中,延长梯形ABCD的两腰AD、BC交于点P,过点D作DF∥CB交AB于点F,得到图②;四边形BCDF的面积为,△ADF的面积,△PDC的面积

在图②中,若DC=2,AB=8,DE=3,则______,
在图②中,若,则=__________,并写出理由;
如图③,□DEFC的四个顶点在△PAB的三边上,若△PDC、△ADE、△CFB的面积分别为2、3、5,试利用(2)中的结论求△PAB的面积.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号