对于函数,若
时,恒有
成立,则称函数
是
上 的“
函数”.
(Ⅰ)当函数是定义域上的“
函数”时,求实数
的取值范围;
(Ⅱ)若函数为
上的“
函数”.
(ⅰ)试比较与
的大小(其中
);
(ⅱ)求证:对于任意大于的实数
,
,
,,
均有
.
已知向量m=(cosx,sinx),n=(cosx,cosx)(x∈R),设函数f(x)=m·n
(1)求 f(x)的解析式,并求最小正周期.
(2)若函数 g(x)的图像是由函数 f(x)的图像向右平移个单位得到的,求g(x)的最大值及使g(x)取得最大值时x的值.
(本小题满分7分)选修4-5:不等式选讲
已知为正数,求证:
.
(本小题满分7分)选修4-4:坐标系与参数方程
在直角坐标系xoy中,直线的参数方程为
(t为参数)。在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为
。
(1)求圆C的直角坐标方程;
(2)设圆C与直线交于点A、B,若点P的坐标为
,求|PA|+|PB|。
(本小题满分14分) 已知R,函数
(x∈R).
(1)当时,求函数f(x)的单调递增区间;
(2)函数f(x)是否能在R上单调递减,若能,求出的取值范围;若不能,请说明理由;
(3)若函数f(x)在上单调递增,求
的取值范围.
(本小题满分13分)已知函数f(x)=x2+ax+b的两个零点是-2和3
(1)求a+b的值。(2)求不等式af(-2x)>0的解集。