如图,已知:在平面直角坐标系中,每个小正方形的边长为1,的顶点都在格点上,点A的坐标为(-3,2)。请按要求分别完成下列各小题:
(1)把△ABC向下平移4个单位,得到△A1B1C1,画出△A1B1C1,点A1的坐标为
(2)画出△ABC关于y轴对称的△A2B2C2;点C2的坐标是
(3)求△ABC的面积。
在某服装批发市场,某种品牌的时装当季节将来临时,价格呈上升趋势,设这种时装开始时定价为 元,并且每周( 天)涨价 元,从第 周开始保持 元的价格平稳销售;从第 周开始,当季节即将过去时,平均每周减价 元,直到第 周周末,该服装不再销售.
(1)试建立销售价 与周次 之间的函数关系式;
(2)若这种时装每件进价 与周次 之间的关系为 ,且 为整数,试问该服装第几周出售时,每件销售利润最大,最大利润为多少?
已知二次函数 的图象经过两点 .
(1)如果 都是整数,且 ,求 的值;
(2)设二次函数 的图象与 轴的交点为 ,与 轴的交点为 .如果关于 的方程 的两个根都是整数,求 的面积.
若方程 有四个互不相等的根,求 的取值范围.
甲、乙两汽车出租公司均有50辆汽车对外出租,下面是两公司经理的一段对话:
甲公司经理:如果我公司每辆汽车月租费 元,那么 辆汽车可以全部租出.如果每辆汽车的月租费每增加 元,那么将少租出1辆汽车.另外,公司为每辆租出的汽车支付月维护费 元.
乙公司经理:我公司每辆汽车月租费 元,无论是否租出汽车,公司均需一次性支付月维护费共计 元.
说明:①汽车数量为整数;②月利润=月租车费-月维护费;③两公司月利润差=月利润较高公司的利润-月利润较低公司的利润.
在两公司租出的汽车数量相等的条件下,根据上述信息,解决下列问题:
(1)当每个公司租出的汽车为 辆时,甲公司的月利润是____元;当每个公司租出的汽车为____辆时,两公司的月利润相等;
(2)求两公司月利润差的最大值;
(3)甲公司热心公益事业,每租出 辆汽车捐出 元 给慈善机构,如果捐款后甲公司剩余的月利润仍高于乙公司月利润,且当两公司租出的汽车均为 辆时,甲公司剩余的月利润与乙公司月利润之差最大,求 的取值范围.
在“乡村振兴”行动中,某村办企业以 两种农作物为原料开发了一种有机产品. 原料的单价是 原料单价的 倍,若用 元收购 原料会比用900元收购 原料少 .生产该产品每盒需要 原料 和 原料 ,每盒还需其他成本 元.市场调查发现:该产品每盒的售价是 元时,每天可以销售 盒;每涨价 元,每天少销售 盒.
(1)求每盒产品的成本(成本 原料费 其他成本 ;
(2)设每盒产品的售价是 元( 是整数),每天的利润是 元,求 关于 的函数解析式(不需要写出自变量的取值范围);
(3)若每盒产品的售价不超过 元( 是大于 的常数,且是整数),直接写出每天的最大利润.