(本小题满分14分)已知抛物线,圆
.
(1)在抛物线上取点
,
的圆周上取一点
,求
的最小值;
(2)设为抛物线
上的动点,过
作圆
的两条切线,交抛物线
于
、
点,求
中点
的横坐标的取值范围.
已知曲线C1的极坐标方程为,曲线C2的极坐标方程为
,曲线C1,C2相交于A,B两点
(I)把曲线C1,C2的极坐标方程转化为直角坐标方程;
(II)求弦AB的长度.
圆O是的外接圆,过点C的圆的切线与AB的延长线交于点D,
,AB=BC=3,求BD以及AC的长.
(本题满分为12分)
已知函数的图像过坐标原点
,且在点
处的切线的斜率是
.
(1)求实数的值;
(2)求在区间
上的最大值;
(3)对任意给定的正实数,曲线
上是否存在两点
,使得
是以
为直角顶点的直角三角形,且此三角形斜边的中点在轴上?请说明理由.
(本题满分为12分)
已知椭圆中心在原点,焦点在y轴上,焦距为4,离心率为.
(I)求椭圆方程;
(II)设椭圆在y轴的正半轴上的焦点为M,又点A和点B在椭圆上,且M分有向线段所成的比为2,求线段AB所在直线的方程.
(本题满分为12分)
在四棱锥中,
底面
,
,
,
,
,
是
的中点.
(I)证明:;
(II)证明:平面
;
(III)求二面角的余弦值.