(本小题满分12分)贵广高速铁路自贵阳北站起,经黔南州、黔东南、广西桂林、贺州、广东肇庆、佛山终至广州南站. 其中广东省内有怀集站、广宁站、肇庆东站、三水南站、佛山西站、广州南站共6个站. 记者对广东省内的6个车站的外观进行了满意度调查,得分情况如下:
车站 |
怀集站 |
广宁站 |
肇庆东站 |
三水南站 |
佛山西站 |
广州南站 |
满意度得分 |
70 |
76 |
72 |
70 |
72 |
x |
已知6个站的平均得分为75分.
(1)求广州南站的满意度得分x,及这6个站满意度得分的标准差;
(2)从广东省内前5个站中,随机地选2个站,求恰有1个站得分在区间(68,75)中的概率.
(本小题满分13分)
已知函数,其中
是常数.
(Ⅰ)当时,求
曲线
在点
处的切线方程;
(Ⅱ)若存在实数,使得关于
的方程
在
上有两个不相等的实数根,求
的取值范围.
(本小题满分14分)
在四棱锥中,底面
是直角梯形,
∥
,
,
,平面
平面
.
(Ⅰ)求证:平面
;
(Ⅱ)求平面和平面
所成二面角(小于
)的大小;
(Ⅲ)在棱上是否存在点
使得
∥平面
?若
存在,求
的值;若不存在,请说明理由.
(本小题满分13分)
为加强大学生实践、创新能力和团队精神的培养,促进高等教育教学改革,教育部门主办了全国大学生智能汽车竞赛. 该竞赛分为预赛和决赛两个阶段,参加决赛的队伍按照抽签方式决定出场顺序.通过预赛,选拔出甲、乙等五支队伍参加决赛.
(Ⅰ)求决赛中甲、乙两支队伍恰好排在前两位的概率;
(Ⅱ)若决赛中甲队和乙队之间间隔的队伍数记为,求
的分布列和数学期望.
(本小题满分13分)
在中,角
,
,
所对的边分别为
,
,
,
,
.
(Ⅰ)求及
的值;
(Ⅱ)若,求
的面积.