(满分12分) 某商店按每件80元的价格,购进商品1000件(卖不出去的商品将成为废品);市场调研推知:当每件售价为100元时,恰好全部售完;当售价每提高1元时,销售量就减少5件;为获得最大利润,商店决定提高售价元,获得总利润
元.
(1)请将表示为
的函数;
(2)当售价为多少时,总利润取最大值,并求出此时的利润.
如图,,
为圆柱
的母线,
是底面圆
的直径,
,
分别是
,
的中点,
.
(1)证明:;
(2)证明:;
(3)假设这是个大容器,有条体积可以忽略不计的小鱼能在容器的任意地方游弋,如果鱼游到四棱锥内会有被捕的危险,求鱼被捕的概率.
已知函数(
).
(1)若,求函数
的极值;
(2)设.
① 当时,对任意
,都有
成立,求
的最大值;
② 设的导函数.若存在
,使
成立,求
的取值范围.
设平面向量,
,函数
.
(1)当时,求函数
的取值范围;
(2)当,且
时,求
的值.
如图,四边形ABCD是梯形,四边形CDEF是矩形,且平面ABCD⊥平面CDEF,∠BAD=∠CDA=90°,,M是线段AE上的动点.
(1)试确定点M的位置,使AC∥平面MDF,并说明理由;
(2)在(1)的条件下,求平面MDF将几何体ADE-BCF分成的两部分的体积之比.
某城市随机抽取一年(365天)内100天的空气质量指数API的监测数据,结果统计如下:
API |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
空气质量 |
优 |
良 |
轻微污染 |
轻度污染 |
中度污染 |
中度重污染 |
重度污染 |
天数 |
4 |
13 |
18 |
30 |
9 |
11 |
15 |
记某企业每天由空气污染造成的经济损失S(单位:元),空气质量指数API为ω。在区间[0,100]对企业没有造成经济损失;在区间对企业造成经济损失成直线模型(当API为150时造成的 经济损失为500元,当API为200时,造成的经济损失为700元);当API大于300时造成的 经济损失为2000元;
(1)试写出是S(ω)的表达式;
(2)试估计在本年内随机抽取一天,该天经济损失S大于200元且不超过600元的概率;
(3)若本次抽取的样本数据有30天是在供暖季,其中有8天为重度污染,完成下面2×2列联表,并判断能否有95%的把握认为该市本年空气重度污染与供暖有关?
|
附:
非重度污染 |
重度污染 |
合计 |
|
供暖季 |
|||
非供暖季 |
|||
合计 |
100 |