(本小题满分14分)设函数R,且为的极值点.(1)当时,求的单调递减区间; (2)若恰有两解,试求实数的取值范围;(3)在(1)的条件下,设,证明:.
已知数列的前和为,且满足。 (1)问:数列是否为等差数列?并证明你的结论; (2)求; (3)求证:。
已知椭圆的中心是坐标原点,它的短轴长为,一个焦点为,一个定点为,且,过点的直线与椭圆相交于两点。(1)求椭圆的方程和离心率;(2)若以为直径的圆恰好过坐标原点,求直线的方程。
直线及圆,是否存在实数,使自发出的光线被直线反射后与圆相切于点?若存在求出,若不存在说明理由。
顶点在原点,焦点在轴上的抛物线截直线所得的弦长|AB|=,求此抛物线的方程。
已知二次函数的二次项系数为,且不等式的解集为, 若的最大值为正数,求实数的取值范围。
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号