(本小题满分14分) 制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目.根据预测,甲、乙项目可能的最大盈利率分别为100﹪和50﹪,可能的最大亏损率分别为30﹪和10﹪.投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元.问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?
济南市开展支教活动,有五名教师被随机的分到A、B、C三个不同的乡镇中学,且每个乡镇中学至少一名教师,
(1)求甲乙两名教师同时分到一个中学的概率;
(2)求A中学分到两名教师的概率;
(3)设随机变量X为这五名教师分到A中学的人数,求X的分布列和期望.
在数列中,
,并且对于任意n∈N*,都有
.
(1)证明数列为等差数列,并求
的通项公式;
(2)设数列的前n项和为
,求使得
的最小正整数
.
已知矩形与正三角形
所在的平面互相垂直,
、
分别为棱
、
的中点,
,
,
(1)证明:直线平面
;
(2)求二面角的大小.
已知向量.
(1)当时,求
的值;
(2)设函数,已知在△ABC中,内角A、B、C的对边分别为
,若
,求
(
)的取值范围.
已知直线过椭圆
的右焦点F,抛物线:
的焦点为椭圆
的上顶点,且直线
交椭圆
于
、
两点,点
、F、
在直线
上的射影依次为点
、
、
.
(1)求椭圆的方程;
(2)若直线交y轴于点
,且
,当
变化时,探求
的值是否为定值?若是,求出的值,否则,说明理由;
(3)连接、
,试探索当
变化时,直线
与
是否相交于定点?