(本小题满分12分)“ALS冰桶挑战赛”是一项社交网络上发起的筹款活动,活动规定:被邀请者要么在24小时内接受挑战,要么选择为慈善机构捐款(不接受挑战),并且不能重复参加该活动.若被邀请者接受挑战,则他需在网络上发布自己被冰水浇遍全身的视频内容,然后便可以邀请另外3个人参与这项活动.假设每个人接受挑战与不接受挑战是等可能的,且互不影响.
(Ⅰ)若某被邀请者接受挑战后,对其他3个人发出邀请,则这3个人中至少有2个人接受挑战的概率是多少?
(Ⅱ)假定(Ⅰ)中被邀请到的3个人中恰有两人接受挑战.根据活动规定,现记为接下来被邀请到的6个人中接受挑战的人数,求
的分布列和均值(数学期望).
已知函数.
(1)若从集合中任取一个元素
,从集合
中任取一个元素
,求方程
有两个不相等实根的概率;
(2)若是从区间
中任取的一个数,
是从区间
中任取的一个数,求方程
没有实根的概率.
已知向量=(1,2),
=(cosa,sina),设
=
+t
(
为实数).
(1)若a=,求当|
|取最小值时实数
的值;
(2)若⊥
,问:是否存在实数
,使得向量
–
和向量
的夹角为
,若存在,请求出t的值;若不存在,请说明理由.
(3)若⊥
,求实数
的取值范围A,并判断当
时函数
的单调性.
已知函数的图象与
轴的交点为
,它在
轴右侧的第一个最高点和第一个最低点的坐标分别为
和
.
(1)求的解析式;
(2)若锐角满足
,求
的值.
已知向量,
(1)当时,求
的取值集合;
(2)求函数的单调递增区间 .
在△ABC中, 若I是△ABC的内心, AI的延长线交BC于D, 则有称之为三角形的内角平分线定理, 现已知AC=2, BC=3, AB=4, 且
, 求实数
及
的值.