(本小题满分12分)已知椭圆的中心在坐标原点,右焦点为,、是椭圆的左、右顶点,是椭圆上异于、的动点,且面积的最大值为.(1)求椭圆的方程;(2)是否存在一定点(),使得当过点的直线与曲线相交于,两点时,为定值?若存在,求出定点和定值;若不存在,请说明理由.
已知,不等式的解集为M . (I)求M; (II)当时,证明:.
已知点P在曲线:(为参数,)上,点Q在曲线:上 (1)求曲线的普通方程和曲线的直角坐标方程; (2)求点P与点Q之间距离的最小值.
自圆外一点引圆的一条切线,切点为,为的中点,过点引圆的割线交该圆于两点,且,. ⑴求证:与相似; ⑵求的大小.
已知函数,其中. (Ⅰ)求的单调区间; (Ⅱ)若在上存在最大值和最小值,求的取值范围.
已知抛物线:,过点(其中为正常数)任意作一条直线交抛物线于两点,为坐标原点. (1)求的值; (2)过分别作抛物线的切线,试探求与的交点是否在定直线上,证明你的结论.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号