(本小题满分为16分)为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,新上了把二氧化碳处理转化为一种可利用的化工产品的项目,经测算,该项目月处理成本y(元)与月处理量x(吨)之间的函数关系可近似地表示为:,且每处理一吨二氧化碳得到可利用的化工产品价值为200元,若该项目不获利,国家将给予补偿.
(1)当x∈[200,300]时,判断该项目能否获利?如果获利,求出最大利润;如果不获利,则国家每月至少需要补贴多少元才能使该项目不亏损?
(2)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?
(本小题满分13分)等差数列满足
,
,数列
的前
项和为
,且
,求数列
和
的通项公式.
本题共14分)已知函数。
(1)求的定义域;
(2)判定的奇偶性;
(3)是否存在实数,使得
的定义域为
时,值域为
?若存在,求出实数
的取值范围;若不存在,请说明理由。
(本题共13分)已知函数在
上满足
,且当
时,
。
(1)求、
的值;
(2)判定的单调性;
(3)若对任意x恒成立,求实数
的取值范围。
(本题共12分)有一小型自来水厂,蓄水池中已有水450吨,水厂每小时可向蓄水池注水80吨,同时蓄水池向居民小区供水,小时内供水总量为
吨。现在开始向池中注水并同时向居民小区供水,问:
(1)多少小时后蓄水池中的水量最少?
(2)如果蓄水池中存水量少于150吨时,就会出现供水紧张,那么有几个小时供水紧张?
(本题共12分)设为定义在
上的偶函数,当
时,
,且
的图象经过点
,又在
的图象中,有一部分是顶点为(0,2),且过
的一段抛物线。
(1)试求出的表达式;
(2)求出值域;