(本小题满分14分)已知函数为奇函数.
(1)求常数k的值;
(2)若,试比较
与
的大小;
(3)若函数,且
在区间
上没有零点,求实数m的取值范围.
某公司生产陶瓷,根据历年的情况可知,生产陶瓷每天的固定成本为14000元,每生产一件产品,成本增加210元.已知该产品的日销售量与产量
件之间的关系式为:
,每件产品的售价
与产量
之间的关系式为:
.
(Ⅰ)写出该陶瓷厂的日销售利润与产量
之间的关系式;
(Ⅱ)若要使得日销售利润最大,每天该生产多少件产品,并求出最大利润.
已知(m
R)
(Ⅰ)当时,求函数
在
上的最大,最小值。
(Ⅱ)若函数在
上单调递增,求实数
的取值范围;
在△ABC中,、
、
分别是角
、
、
的对边,且
.
(Ⅰ)求角的大小;
(Ⅱ)若,求△ABC的面积.
函数是定义在(-1,1)上的单调递增的奇函数,且
(Ⅰ)求函数的解析式;
(Ⅱ)求满足的
的范围;
已知函数且对于任意实数
恒成立。
(1)求的值;
(2)求函数的最大值和单调递增区间。