(本小题满分12分)设抛物线C1:y2=4x的准线与x轴交于点F1,焦点为F2;以F1,F2为焦点,离心率为的椭圆记作C2
(1)求椭圆的标准方程;
(2)直线L经过椭圆C2的右焦点F2,与抛物线C1交于A1,A2两点,与椭圆C2交于B1,B2两点。当以B1B2为直径的圆经过F1时,求|A1A2|长。
(3)若M是椭圆上的动点,以M为圆心,MF2为半径作圆,是否存在定圆
,使得
与
恒相切?若存在,求出
的方程,若不存在,请说明理由。
下列不等式一定成立的是()
A.![]() |
B.![]() |
C.![]() |
D.![]() |
已知函数(其中
).
(Ⅰ)若函数在点
处的切线为
,求实数
的值;
(Ⅱ)求函数的单调区间.
直线AB过抛物线x2=2py(p>0)的焦点F,并与其相交于A、B两点,Q是线段AB的中点,M是抛物线的准线与y轴的交点,O是坐标原点.
(Ⅰ)求的取值范围;
(Ⅱ)过A、B两点分别作此抛物线的切线,两切线相交于N点.
求证:;
(Ⅲ)若p是不为1的正整数,当,△ABN的面积的取值范围为[5
,20
]时,求该抛物线的方程.
设是满足不等式
的自然数
的个数,其中
.
(Ⅰ)求的值;
(Ⅱ) 求的解析式;
(Ⅲ)记,令
,试比较
与
的大小.
如图,已知正三棱柱
—
的底面边长是
,
是侧棱
的中点,直线
与侧面
所成的角为
.
(Ⅰ)求此正三棱柱的侧棱长;
(Ⅱ)求二面角的大小;
(Ⅲ)求点到平面
的距离.