游客
题文

为了迎接省运会,为了降低能源损耗,鹰潭市体育馆的外墙需要建造隔热层.体育馆要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度(单位:cm)满足关系:,若不建隔热层,每年能源消耗费用为8万元.设为隔热层建造费用与20年的能源消耗费用之和.
(1)求的值及的表达式;
(2)隔热层修建多厚时,总费用达到最小,并求最小值

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

如图,已知椭圆(a>b>0)的离心率,过点A(0,-b)和B(a,0)的直线与原点的距离为
(1)求椭圆的方程.
(2)已知定点E(-1,0),若直线y=kx+2(k≠0)与椭圆交于C、D两点.问:是否存在k的值,使以CD为直径的圆过E点?请说明理由.

在正方体中,如图E、F分别是 ,CD的中点,
(1)求证:
(2)求.

已知:等差数列{}中,=14,前10项和.
(Ⅰ)求
(Ⅱ)将{}中的第2项,第4项,…,第项按原来的顺序排成一个新数列,求此数列的前项和.

抛物线的顶点在原点,它的准线过双曲线的一个焦点,并与
双曲线的实轴垂直,已知抛物线与双曲线的交点为,求抛物线的方程和双曲线的方程.

已知关于x的一元二次方程 (m∈Z)
① mx2-4x+4=0,
② x2-4mx+4m2-4m-5=0,求方程①和②都有整数解的充要条件.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号