游客
题文

为了迎接省运会,为了降低能源损耗,鹰潭市体育馆的外墙需要建造隔热层.体育馆要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度(单位:cm)满足关系:,若不建隔热层,每年能源消耗费用为8万元.设为隔热层建造费用与20年的能源消耗费用之和.
(1)求的值及的表达式;
(2)隔热层修建多厚时,总费用达到最小,并求最小值

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

(本题10分)中心在原点,焦点在x轴上的椭圆C上的点到焦点距离的最大值为3,最小值为1.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线与椭圆C相交于A,B两点(A,B不是左右顶点),且以AB为直径的圆过 椭圆C的右顶点.求证:直线l过定点,并求该定点的坐标.

(本题10分)设.若存在单调增区间,求a的取值范围.

(本题8分) 已知直线被抛物线C截得的弦长.
(Ⅰ)求抛物线C的方程;
(Ⅱ)若抛物线C的焦点为F,求三角形ABF的面积.

(本题8分) 设函数定义在上,,导函数
.求的单调区间和最小值.

数列)由下列条件确定:①;②当时,满足:当时,,;当时,.
(Ⅰ)若,写出,并求数列的通项公式;
(Ⅱ)在数列中,若(,且),试用表示
(Ⅲ)在(Ⅰ)的条件下,设数列满足
(其中为给定的不小于2的整数),求证:当时,恒有.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号