(本小题满分16分)
在平面直角坐标系中,已知椭圆
:
的离心率
,直线
过椭圆
的右焦点
,且交椭圆
于
,
两点.
(1)求椭圆的标准方程;
(2)已知点,连结
,过点
作垂直于
轴的直线
,设直线
与直线
交于点
,试探索当
变化时,是否存在一条定直线
,使得点
恒在直线
上?若存在,请求出直线
的方程;若不存在,请说明理由.
(本小题满分12分)
如图1,在中,
°,BD
AC,AD=2CD=4,将
沿BD折起至
的位置,连结
,(如图2),记二面角
的大小为
(0<
<
).
(I)求证:BD。
(II)当=90°时,求四面体
的表面积。
(本小题满分12分)
某工厂投资生产A产品时,每生产一百吨需要资金200万元,需要场地200平方米,可获利润300万元;投资生产B产品时,每生产一百吨需要资金300万元,需要场地100平方米,可获利润200万元。现在该工厂可使用资金1400元,场地900平方米,问应做怎样的组合投资,可使获利最大?并求出最大利润(以百万元为单位)。
(本小题满分12分)
如图所示,在海拔为500m的海岛A处,测得海面上两船C、D的俯角分别为45°和30°,又测得°,求C、D两船间的距离。
(本大题满分12分)
已知数列,
的通项公式分别为
(I)求证数列{}是等比数列;
(II)求数列{}的前n项和为
。
(本大题满分10分)
已知的顶点坐标分别为A(-1,1),B(2,7),C(-4,5)。
求AB边上的高CD所在的直线方程。