(本小题满分12分)
如图1,在中,
°,BD
AC,AD=2CD=4,将
沿BD折起至
的位置,连结
,(如图2),记二面角
的大小为
(0<
<
).
(I) 求证:BD。
(II) 当=90°时,求四面体
的表面积。
如图,已知平行六面体中,底面
是边长为
的菱形,侧棱
且
;
(Ⅰ)求证:平面
及直线
与平面
所成角;
(Ⅱ)求侧面与侧面
所成的二面角的大小的余弦值
本题满分14分)设,圆
:
与
轴正半轴的交点为
,与曲线
的交点为
,直线
与
轴的交点为
.
(Ⅰ)求证:;
(Ⅱ)设,
,求证:
.
已知函数
(),且函数
的最小正周期为
.
(Ⅰ)求函数的解析式;
(Ⅱ)在△中,角
所对的边分别为
.若
,
,且
,试求
的值.
已知,直线l:
,椭圆C:
,
,
分别为椭圆C的左、右焦点。
(Ⅰ)当直线l过右焦点时,求直线l的方程;
(Ⅱ)设直线l与椭圆C交于A,B两点。
(ⅰ)求线段AB长度的最大值;
(ⅱ),
的重心分别为G,H。若原点O在以线段GH为直径的圆内,求实数
的取值范围。
已知曲线C在y轴右边,C上每一点到点F(1,0)的距离减去它到y轴距离的差是1。
(Ⅰ)求曲线C的方程;
(Ⅱ)过点K(-1,0)的直线l与C相交于A、B两点,点A关于x轴的对称点为D。证明:点F在直线BD上;