如图,有一块边长为1(百米)的正方形区域ABCD,在点A处有一个可转动的探照灯,其照射角始终为
(其中点P,Q分别在边BC,CD上),设
.
(Ⅰ)用t表示出PQ的长度,并探求的周长l是否为定值;
(Ⅱ)问探照灯照射在正方形ABCD内部区域阴影部分的面积S最大为多少(平方百米)?
(本小题满分12分)设{an}是公比为 q的等比数列,且a1,a3,a2成等差数列.
(1)求q的值;
(2)设{bn}是以2为首项,q为公差的等差数列,其前n项和为Sn,当n≥2时,比较Sn与bn的大小,并说明理由.
(本小题满分12分)若数列满足前
项之和
且
,
(1)求数列的通项公式
(2)证明:是等差数列
(3)求的前
项和
.
(本小题满分12分)一变压器的铁芯截面为正十字型,为保证所需的磁通量,要求十字应具有的面积,问应如何设计十字型宽
及长
,才能使其外接圆的周长最短,这样可使绕在铁芯上的铜线最节省.
已知a>0,b>0,m>0,n>0,求证:am+n+bm+n ≥ ambn+anbm.
(本题14分)对于函数,若
,则称
为
的“不动点”,若
,则称
为
的“稳定点”,函数
的“不动点”和“稳定点”的集合分别记为A和B,即
.
(1)设,求集合A和B;
(2)若,
,求实数
的取值范围;
(3)若,求证:
.