一个透明的球形装饰品内放置了两个公共底面的圆锥,且这两个圆锥的顶点和底面圆周都在这个球面上,如图,已知圆锥底面面积是这个球面面积的,设球的半径为
,圆锥底面半径为
.
(1)试确定与
的关系,并求出较大圆锥与较小圆锥的体积之比;
(2)求出两个圆锥的体积之和与球的体积之比.
(本小题满分13分)已知函数.
(1)若函数在
上单调递增,求实数
的取值范围.
(2)记函数,若
的最小值是
,求函数
的解析式.
(本小题满分12分)已知椭圆方程为斜率为
的直线过椭圆的上焦点且与椭圆相交于P,Q两点,线段PQ的垂直平分线与y轴交于点M(0,m)。
(1)求m的取值范围;
(2)求△OPQ面积的取值范围。
(本小题满分12分)如图,四棱锥P-ABCD中底面ABCD为矩形,PD⊥底面ABCD,AD=PD=1,AB=BC,E、F分别为CD、PB的中点。
(1)求证:EF⊥平面PAB;
(2)求三棱锥P-AEF的体积
(本小题满分12分)一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.
(1)从袋中随机抽取一个球,将其编号记为,然后从袋中余下的三个球中再随机抽取一个球,将其编号记为
.求关于
的一元二次方程
有实根的概率;
(2)先从袋中随机取一个球,该球的编号为,将球放回袋中,然后再从袋中随机取一个球,该球的编号为
.若以
作为点P的坐标,求点P落在区域
内的概率.
(本小题满分12分)设数列的前
项和为
,已知
(1)求数列的通项公式;
(2)若,求数列
的前
项和