(本小题满分12分) 如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.动点M从点C出发,以每秒1cm的速度沿CA向终点A移动,同时动点P从点A出发,以每秒2cm的速度沿AB向终点B移动,连接PM,设移动时间为t(s)(0<t<2.5).
(1)当AP=AM时,求t的值.
(2)设四边形BPMC的面积为(cm²),求y与t之间的函数关系式;
(3)是否存在某一时刻t,使四边形BPMC的面积是Rt△ABC面积的?若存在,求出相应t的值,若不存在,说明理由;
(4)是否存在某一时刻t,使以M,P,A为顶点的三角形与△ABC相似?若存在,求出相应t的值;若不存在,说明理由.
化简(4分×4,共16分)(1)2x2y-2xy-4xy2+xy+4x2y-3xy2
(2) 3 (4x2-3x+2)-2 (1-4x2+x)
(3)5abc-2a2b-[ 3abc-3 (4ab2+a2b)]
(4) (2x2+x)-2[x2-2(3 x2-x)]
如图(1),在⊿ABC中,AE=EB,AF=FC,则EF与BC存在以下关系:EF∥BC, ;将AC沿BC方向平移到DH,得图(2),沿CB方向平移到DH得图(3),图(2)中AD与BH存在关系:EF∥AD,
;,那么在图(3)中是否有类似于图(1)(2)中的结论,请把猜想的结论填在方框内,并就图(3)的结论加以证明。
某工程队在我县实施一江两岸山水园林县城的改造建设中,承包了一项拆迁工程,原计划每天拆1250m2,因为准备工作不足,第一天少拆20%,从第二天开始,该工程队加快拆迁速度,第三天就拆迁了1440m2,
问:该工程队第一天拆迁面积是多少?
若该工程队第二、三天拆迁面积比前一天增加的百分数相同,求这个百分数。
为了测量学校操场上旗杆的高度,小明请同学帮忙,测量了同一时刻自己的影长EC和旗杆的影长BC分别为0.6m和3.6m,如图,如果小身高CD为1.5m,请计算旗杆AB的高度。
如图,⊿ABC在平面直角坐标系内三顶点坐标分别为先画出⊿ABC;
以B为位似中心,画出⊿A1B1C1,使⊿A1B1C1与⊿ABC相似且相似比为2:1