游客
题文

在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点, A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,-3)点,点P是直线BC下方的抛物线上一动点.

(1)求这个二次函数的表达式.
(2)连结PO、PC,并把△POC沿CO翻折,得到四边形POP′C, 那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.
(3)当点P运动到什么位置时,四边形 ABPC的面积最大并求出此时P点的坐标和四边形ABPC的最大面积.

科目 数学   题型 解答题   难度 较难
知识点: 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

已知,正方形ABCD,点P在对角线BD上,连接AP、CP(如图①)

(1)求证:AP=CP.
(2)将一直角三角板的直角顶点置于点P处并绕点P旋转,设两直角边分别交DC、BC于E、F,
a.若旋转到图②位置,使PE与PA在一直线上,求证:PF=PA.
b.若旋转到图③位置且PD∶PB=2∶3,求PE∶PF的值.

如图,已知AB是⊙O的直径,点D、E在⊙O上,且︵AD∶︵DE=3∶5, ︵BE的度数为20°,连接DE并延长交AB的延长线于C,
求∠AOD的度数;
判断CE与AB有什么数量关系,并说明理由

我们已经学过用方差来描述一组数据的离散程度,其实我们还可以用“平均差”来描述一组数据的离散程度。在一组数据x1,x2,…,xn中,各数据与它们的平均数的差的绝对值的平均数,即T=(|x1-|+|x2-|+…+|xn-|)叫做这组数据的“平均差”,“平均差”也能描述一组数据的离散程度,“平均差”越大说明数据的离散程度越大。
请你解决下列问题:
分别计算下列甲乙两个样本数据的“平均差”,并根据计算结果判断哪个样本波动较大。
甲:12,13,11,10,14,乙:10,17,10,13,10
分别计算甲、乙两个样本数据的方差和标准差,并根据计算结果判断哪个样本波动较大.
以上的两种方法判断的结果是否一致?

某商店9月份的利润是2500元,要使11月的利润达到3600元,平均每月增长的百分率是多少?

计算:(2-3解方程:

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号