学校准备添置一批计算机.
方案1:到商家直接购买,每台需要7000元;
方案2:学校买零部件组装,每台需要6000元,另外需要支付安装工工资等其它费用合计3000元.设学校需要计算机x台,方案1与方案2的费用分别为y1、y2元.
(1)分别写出y1、y2的函数解析式;
(2)当学校添置多少台计算机时,两种方案的费用相同?
(3)若学校需要添置计算机50台,那么采用哪一种方案较省钱?说说你的理由
已知分式:,
,其中
.学生甲说A与B相等,乙说A与B互为倒数,丙说A与B互为相反数,她们三个人谁的结论正确?为什么?
观察下面的变形规律:=1-
;
=
-
;
=
-
;……解答下面的问题:
(1)若n为正整数,请你猜想= ;
(2)求和:+
+
.(注:只能用上述结论做才能给分);
(3)用上述相似的方法求和:.
已知:如图,∠ABC=50°,∠ACB=80°,点D、B、C、E四点共线,DB=AB,CE=CA,求∠D、∠E、∠DAE的度数.
用反证法证明:已知直线a、b被直线c所截,∠1+∠2≠180°.求证:a与b不平行.
证明:假设_________________________,则:∠1+∠2=180°(___________________________)
这与____________________矛盾,故假设不成立.所以a与b不平行.
一辆快车从甲地开往乙地,一辆慢车从乙地开往甲地,两车同时出发,设慢车离乙地的距离为(km),快车离乙地的距离为
(km),慢车行驶时间为x(h),两车之间的距离为S(km),
,
与x的函数关系图象如图(1)所示,S与x的函数关系图象如图(2)所示:
(1)图中的a= ,b= ;
(2)求S关于x的函数关系式;
(3)甲、乙两地间依次有E、F两个加油站,相距200km,若慢车进入E站加油时,快车恰好进入F站加油.求E加油站到甲地的距离.