游客
题文

(本小题满分14分)已知椭圆的中心在坐标原点,两焦点分别为双曲线的顶点,直线与椭圆交于两点,且点的坐标为,点是椭圆上异于点,的任意一点,点满足,且三点不共线.
(1)求椭圆的方程;
(2)求点的轨迹方程;
(3)求面积的最大值及此时点的坐标.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

已知椭圆的离心率为,右焦点也是抛物线的焦点。
(1)求椭圆方程;
(2)若直线相交于两点。
①若,求直线的方程;
②若动点满足,问动点的轨迹能否与椭圆存在公共点?若存在,求出点的坐标;若不存在,说明理由。

已知函数).
(1)当时,求函数上的最大值和最小值;
(2)当函数单调时,求的取值范围;
(3)求函数既有极大值又有极小值的充要条件。

等差数列的各项均为正数,,前项和为为等比数列, ,且
(1)求
(2)求数列的前项和
(3)若对任意正整数和任意恒成立,求实数的取值范围.

(本小题满分12分)
如图,在长方体中,的中点,的中点。
(1)证明:
(2)求与平面所成角的正弦值。

中,内角对边的边长分别是,且满足
(1)时,若,求的面积.
(2)求的面积等于的一个充要条件。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号