(本小题满分12分)已知的内角
、
、
的对边分别为
、
、
,
,且
(1)求角;
(2)若向量与
共线,求
、
的值.
(本小题满分14分)
桌面上有三颗均匀的骰子(6个面上分别标有数字1,2,3,4,5,6)。重复下面的操作,直到桌面上没有骰子:将骰子全部抛掷,然后去掉那些朝上点数为奇数的骰子。记操作三次之内(含三次)去掉的骰子的颗数为X.
(1)求;
(2)求X的分布列及期望.
(本小题满分14分)
已知的三个内角
、
、
所对的边分别为
,向量
,且
.
(1)求角A的大小;
(2)若,试判断
取得最大值时
形状.
(本小题满分12分)
已知A、B、C是直线l上的三点,O是直线l外一点,向量满足
=[f(x
)+2f′(1)]
-ln(x+1)
。
(Ⅰ)求函数y=f(x)的表达式; (Ⅱ)若x>0,证明:f(x)> ;
(Ⅲ)若不等式x2≤f(x2)+m2-2m-3对x∈[-1,1]恒成立,求实数m的取值范围。
(本小题满分12分)
设椭圆C1:的左、
右焦点分别是F1、F2,下顶点为A,线段OA的中点为B(O为坐标原点),如图.若抛物线C2:
与y轴的交点为B,且经过F1,F2点。
(Ⅰ)求椭圆C1的方程;
(Ⅱ)设M(0,),N为抛物线C2上的一动点,过点N作抛物线C2的切线交椭圆C1于P、Q两点,求
面积的最大值。
(本小题满分12分)
已知数列满足
,
,设数列
的前n项和为
,令
。
(Ⅰ)求数列的通项公式;(Ⅱ)求证:
。