(本小题满分15分)在△ABC中,角、
、
的对边分别为
、
、
,设S为△ABC的面积,满足
.
(Ⅰ)求角C的大小;
(Ⅱ)若,且
,求
的值.
(原创)已知{}是公比为q的等比数列,且
成等差数列.
(1)求q的值;
(2)设数列的前
项和为
,试判断
是否成等差数列?说明理由.
已知函数定义域是
,且
,
,当
时,
.
(1)证明:为奇函数;
(2)求在
上的表达式;
(3)是否存在正整数,使得
时,
有解,若存在求出
的值,若不存在说明理由.
(原创)已知焦点在轴上,中心在坐标原点的椭圆C经过点
(Ⅰ)求椭圆C的短轴长的取值范围;
(Ⅱ)若椭圆C的离心率为,且直线
分别切椭圆C与圆
(其中
)于A、B两点,求|AB|的最大值.
如图所示,在边长为12的正方形中,点
在线段
上,且
,作
,分别交
于点
,
.作
,分别交
于点
,
.将该正方形沿
折叠,使得
与
重合,构成如图的三棱柱
.
(1)求证:平面
;
(2)求四棱锥的体积.