已知圆:
,直线
过定点
(1)若直线与圆相切,切点为
,求线段
的长度;
(2)若与圆相交于
两点,线段
的中点为
,又
与
:
的交点为
,判断
•
是否为定值,若是,则求出定值;若不是,请说明理由
(本小题满分10分)选修4-4:坐标系与参数方程
已知在平面直角坐标系中,直线
的参数方程是
(
是参数),以原点
为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程
.
(Ⅰ)判断直线与曲线
的位置关系;
(Ⅱ)设为曲线
上任意一点,求
的取值范围.
(本小题满分10分)选修4-1:几何证明选讲
如图,四边形是⊙
的内接四边形,延长
和
相交于点
,
,
.
(Ⅰ)求的值;
(Ⅱ)若为⊙
的直径,且
,
求的长.
(本小题满分12分)设函数,曲线
过点
,且在点
处的切线方程为
.
(Ⅰ)求,
的值;
(Ⅱ)证明:当时,
;
(Ⅲ)若当时,
恒成立,求实数
的取值范围.
(本小题满分12分)如图,抛物线:
与椭圆
:
在第一象限的交点为
,
为坐标原点,
为椭圆的右顶点,
的面积为
.
(Ⅰ)求抛物线的方程;
(Ⅱ)过点作直线
交
于
、
两点,射线
、
分别交
于
、
两点,记
和
的面积分别为
和
,问是否存在直线
,使得
?若存在,求出直线
的方程;若不存在,请说明理由.
(本小题满分12分)为等腰直角三角形,
,
,
、
分别是边
和
的中点,现将
沿
折起,使面
面
,
、
分别是边
和的中点,平面
与
、
分别交于
、
两点.
(Ⅰ)求证:;
(Ⅱ)求二面角的余弦值;
(Ⅲ)求的长.