(本小题满分12分)已知
是抛物线
上一点,经过点
的直线
与抛物线
交于
两点(不同于点
),直线
分别交直线
于点
.
(1)求抛物线方程及其焦点坐标;
(2)已知
为原点,求证:
为定值.
在平面直角坐标系
中,以
为极点,
轴非负半轴为极轴建立坐标系,已知曲线
的极坐标方程为
,直线
的参数方程为:
(
为参数),两曲线相交于
两点.
(1)写出曲线
的直角坐标方程和直线
的普通方程;
(2)若
求
的值.
已知直线
:
为参数), 曲线
(
为参数).
(1)设
与
相交于
两点,求
;
(2)若把曲线
上各点的横坐标压缩为原来的
倍,纵坐标压缩为原来的
倍,得到曲线
,设点
是曲线
上的一个动点,求它到直线
的距离的最小值.
已知曲线C的极坐标方程是
.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是:
(
是参数).
(1)将曲线C的极坐标方程化为直角坐标方程,将直线
的参数方程化为普通方程;
(2)若直线l与曲线C相交于A、B两点,且
,试求实数m值.
已知直线
的参数方程为
,(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为
.
(1)把圆C的极坐标方程化为直角坐标方程;
(2)将直线
向右平移h个单位,所得直线
与圆C相切,求h.
已知直线
的参数方程为
,(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为
.
(1)把圆C的极坐标方程化为直角坐标方程;
(2)将直线
向右平移h个单位,所得直线
与圆C相切,求h.